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Abstract 

The generalisation of the topological quantum field theory construction of Turaev and 
Viro to arbitrary dimension is presented, and it is shown that q-deformed spin-networks, 
or the recoupling theory of the quantum group Uqsl (2) provide a realisation of the initial 
data for the construction of 2-, 3- and 4-dimensional TQFTs. 
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1. Introduction 

Topological quantum field theories (TQFTs) are in many ways the simplest 
quantum field theories. They are QFTs in which the correlators, which com- 
pletely characterise the theory, depend only on the topology of the underlying 
space. They hence generate global invariants (smooth invariants) of manifolds. 
The general characteristics of TQFTs mean that it is possible to write down a 
short list of  axioms which reflect the essential properties of the formal path inte- 
grals and put the subject on a firm mathematical footing. This was first done by 
Atiyah in Ref. [ 1 ]. Atiyah's main aim in formulating such axioms was to encour- 
age topologists to extract and build on the vast resources of QFT knowledge. 
However, they also suggest other possible constructions of TQFTs. It is apparent 
that as we are only interested in the global topology of the manifolds we may just 
as well work in the category of piecewise linear manifolds and carry out a con- 
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struction in a purely combinatoric fashion, resulting in combinatoric invariants 
of manifolds such as the well known combinatoric formula for the Euler charac- 
teristic of a triangulated manifold. The Euler characteristic of course classifies 
two-dimensional manifolds topologically; however, in higher dimensions it is a 
very weak (highly degenerate) invariant. In searching for new combinatoric in- 
variants we have theorems at our disposal [2,3] which reduce topological invar- 
iance, here meaning homeomorphisms between the piecewise linear manifolds, 
to local moves on a cell decomposition. It was physicists who first noticed that 
the 6j-symbols ofSU(2 ) had the symmetries ofa  tetrahedron and that there were 
identities between sums of them, such as the Biedenharn-Elliot relation, which 
correspond to topology conserving moves on simplicial 3-manifolds. In the 60's 
Ponzano and Regge [4 ] noticed, from their asymptotic large spin formula for 
these 6j-symbols, an intriguing relationship between 6j-symbols and three-di- 
mensional quantum gravity. In the early 70's Penrose [ 5 ] also found that SU (2) 
recoupling theory (spin networks) had some intrinsic properties of a three-di- 
mensional space. However, the expression for the partition function given in Refs. 
[4] and [6], of a product of 6j-symbols for each tetrahedron summed over rep- 
resentations, though formally a topological invariant, is divergent. It was not un- 
til quantum groups and their representation theory emerged that Turaev and Viro 
were able to rigorously define such combinatoric invariants of 3-manifolds and a 
three-dimensional TQFT using the quantum 6j-symbols of Uqsl (2) at q a root of 
unity. Generalisations of the Turaev-Viro state-sum model describing other three- 
dimensional TQFTs have been looked at in Refs. [ 7-9 ]. 

In Ref. [ 10 ] Boulatov uncovered a formal relationship between these three- 
dimensional state-sum models at q= 1, and lattice gauge theory. This suggested a 
generalisation to arbitrary dimension, as noted in Ref. [ 11 ], where the d=  4 case 
is discussed. This paper is concerned with the rigorous construction of topologi- 
cal state-sum models for general dimension. We now provide a short overview. 

Overview. In Section 2 we describe a construction of topological quantum field 
theories (TQFTs) as axiomatised by Atiyah in Ref. [1 ], in terms of certain ab- 
stract initial data. 

The construction should be seen as a generalisation of the three-dimensional 
"state-sum" model construction of Turaev and Viro in Ref. [ 12 ]. The approach 
used resembles that of Ref. [ 8 ], where one starts with a non-topological theory 
defined on simplicial manifolds using finite initial data and analyse the con- 
straints that topological invariance imposes on this data. Hence we start by defin- 
ing a simplicial quantum field theory (SQFT) as consisting of a finite dimen- 
sional vector space V(S) associated with each ( d - 1  )-dimensional simplicial 
manifold S and a linear map Z(M) : V(OM) -~C with each d-dimensional simpli- 
cial manifold M, together with some "gluing" axioms. The abstract data that is 
introduced consists basically of Z and V for a d-simplex and ( d -  1 )-simplex, 
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respectively. The gluing axioms can be used to build up Z and Vfor all simplicial 
manifolds. A SQFT is said to be topological (and hence a TQFT) when the maps 
Z depend only on the topology of M. We use a theorem due to Pachner [ 3 ] to 
express this topological invariance in terms of constraints on the initial data of 
the SQFT. In order to make these constraints more transparent we translate the 
construction to one on the lattice dual to the triangulation. In dimension d~< 4, 
the constraints can then be understood as identities between topological invar- 
iants of certain graphs embedded in a ( d -  1 )-dimensional sphere. A realisation 
of TQFT initial data hence corresponds to finding examples of graph invariants 
satisfying these identities. 

The first non-trivial realisation of the initial data for TQFTs of dimension 2, 3 
and 4 is obtained from q-deformed spin-networks, when q is a root of  unity. These 
networks correspond to the recoupling theory of the quantum group UqSl(2), 
though in order to avoid unnecessary quantum group representation theory in 
Section 3 we describe the initial data explicitly in terms of the Kauffman bracket 
polynomial in q and q -  1. 

2. The construction 

2.1. The piecewise linear category 

As this whole construction takes place in the piecewise linear category, we will 
first quickly run over some relevant definitions. 

2.1.1. Simplicial complexes and piecewise linear maps 

Definition 2.1. Given n +  1 points Xo, ..., x,  in general position in R N for N>  n, an 
n-simplex a " -  (Xo, ..., x , )  with vertices Xo, ..., x,  is defined to be the following 
subspace of RN: 

t r " -  ~ ; t~x , ,  for ~ 2 ,=1 ,2 i~>0.  (2.1) 
i = 0  i = 0  

Definition 2.2. A face (respectively proper face ) of  an n-simplex a" is any simplex 
whose vertices are a subset (respectively proper subset) of those o f a  ". 

Definition 2.3. A simplicial complex K is a finite collection of simplexes in R N 
such that if a~ ~K then so are all of  its faces, and if aT, a~' ~K then e~ c~e~' is 
either a face of a~' or empty. 

Definition 2.4. A simplicial map f: K-,L between two simplicial complexes K and 
L is a continuous map f:  I KI --, ILl which takes n-simplexes to n-simplexes for all 
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n. By [KI we mean the following subset of RN: 

I/ 1 --- U 0 - .  
o'EK 

f i s  a simplicial isomorphism i f f  - ] :  L ~ K  is also a simplicial map. 

(2.2) 

Def in i t ion  2.5. A subdivision K' ofKis  a simplicial complex such that I g '  I - I g l ,  
and each n-simplex of K' is contained in an n-simplex of K. 

Def in i t ion  2.6. A piecewise linear homeomorphism f : K - , L  between two simpli- 
cial complexes is a map which is a simplicial isomorphism for some subdivisions 
K' andL '  of  K a n d L .  

The simplicial approximation theorem says that any continuous map between 
I KI and I L I is homotopic to a simplicial map between some subdivisions K' and 
L' of  the two simplicial complexes Kand  L. Also if there exists a piecewise linear 
homcomorphism between K and L, then I KI and ILl are homeomorphic. The 
equivalence relation generated by piecewise linear homeomorphisms defines top- 
ological equivalence of piecewise linear complexes. 

2.1.2. Piecewise linear manifolds 

Def in i t ion  2.7. The star of a simplex 0-1 in a simplicial complex K, denoted star 
(0-]), is the union of all simplexes 0-2 eK satisfying 0-2 c~ t~] # ~, where #1 is 0-1 with- 
out its proper faces. 

Def in i t ion  2.8. The link of a simplex al in K is the union of all faces a3 of all 
simplexes 0" 2~ star (0-1) satisfying 0-3 N 0-1 = (~ (see Fig. 1 ). 

3 

%%% s I 

~mk ((D)=((2,3),(2,4),(3,4),(2),(3),(4)) 

(a) 

4 

,A,.---..... 

• • // j J  . -  J 

2~t ,.', - 

link ((1,2,3))=((4),(5)) 

(b) 

Fig. 1. (a) The link of a 0-simplex in a simplicial 2-manifold, and (b) the link of a 2-simplex in a 
simplicial 3-manifold. 
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Let/1" be a simplicial complex consisting of an n-simplex together with all its 
faces and let 0/1" be/f" without the n-simplex. Then a simplicial complex K is 
called a simplicial n-manifold if for all r-simplexes ar~K, link(a r) has the same 
topology as O/f"-r or/1"-r- ~. The collection of simplexes of the first type form the 
set Int K, and those of the second type form the complex OK. The equivalence 
classes of simplicial manifolds generated by piecewise linear homeomorphisms 
are called piecewise linear n-manifolds (or just n-manifolds ) and for a given sim- 
plicial n-manifold M we denote by ~/¢ the equivalence class to which it belongs. 

2.2. Topological quantum field theory 

A natural step in this topological quantum field theory construction is to first 
construct what we call a simplicial quantum field theory. This is defined so as to 
depend only on the connecting structure of simplicial manifolds, i.e. on simplicial 
manifolds up to simplicial isomorphisms. 

2.2.1. Simplicial quantum field theory 
A d-dimensional SQFT consists of a finite dimensional vector space V(S) over 

C associated with each closed simplicial ( d - 1  )-manifold S and linear maps 
Z(M):V(dM)--,C for each simplicial d-manifold. These should satisfy the fol- 
lowing conditions: 
( S 1 ) Vand Z depend on S and M only up to simplicial isomorphisms, i.e., V(S~ ) 

is isomorphic to V(S2) ifS~ and $2 are related by a simplicial isomorphism, 
and similarly Z(MI )=Z(M2), up to the isomorphism between V(OM~ ) 
and V(dM2 ), ifM~ and M2 are related by a simplicial isomorphism. 

($2) V(SI•S2)= V(S~)®V(S2), for the disjoint union of closed simplicial 
( d -  1 )-manifolds $1 and $2. 

($3) If S* is S with its orientation flipped, then V(S* ) is the dual space of V(S), 
i.e., there is a non-degenerate natural pairing <,  > : V(S*) ® V(S)--,C. 

($4) Z is multiplicative in that for the disjoint union of simplicial d-manifolds, 
Ml and M2 

Z(M, u M2)" (v, ®v2) =Z(M~ ).v, Z(M2)"v2 , 

where vie V(dM~). Also if dM=S~) ~w ~'* then (S, ~, ~* being disjoint) 

Z(hTI).v-- ~ Z(M). (v®e.®e*) , 
OL 

where 3~r is M with ~ and ~* identified in the natural way, ve V(S) and e. 
and e* are bases of V(~) and V(~*) satisfying (e*,  e a ) = 6.,p. 

A SQFT may be constructed with the following abstract data: 
(D1) A finite set I={a, b, c ....  }, called the colour set, containing a preferred 

element, 0, and an involution map • :I--,I: a-,a*, with 0"= 0. 
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(D2) 
(D3) 

(D4) 

A non-zero gluing coefficient oga~C, for each a s L  
A finite dimensional vector space V a'a2"''ad over the complex numbers C, 
for each d-tuple ( a~, ..., ad) ~I  a with 

V ' ' ~ =  V blbd , if a~...ad is an even permutation of b~'"ba, 

V " T a ~ -  ( Vb'"'b'O*, i f  a~'..ad is an odd permutation of bl'"bd, 

where (Vbl"bd) * denotes the space dual to V b.bd, and we again denote the 
natural inner product by ( , ) : va~'"a~® ( V~'"'a0*-oC. 
A linear map Z(Ad) : V(OA a) -oC, for one particular fixed zt a (a d-simplex 
together with its faces). 

We now describe the SQFT construction. 

Definition 2.9. A k-colouring 8 of a simplicial n-manifold M is a map from the set 
of  k-simplexes of M to the colour set L 

Definition 2.10. An ordered simplicial n-manifold M is one in which the n-sim- 
plexes a~' have been given an ordering. 

In the following we will always mean ordered simplicial n-manifold when we 
say simplificial n-manifold. We will use the initial data to associate vector spaces 
with ordered simplicial n-manifolds. Two such spaces whose arguments differ 
only by an ordering will easily be seen to be isomorphic. The maps Z will also be 
defined in such a way that up to these isomorphisms on the spaces V, they will be 
independent of the ordering of the simplicial manifolds. 

Given a simplicial n-manifold M with ( n -  1 )-colouring a, define 

V((~n; 8 ) ~  V al'''an+l , (2.3) 

for each n-simplex anaMwhere  ai or a* are the colours of the ( n -  1 )-simplexes, 
a~-- 1 ~ ( an (.~ M),  depending upon whether a n comes before or after the n-simplex 
glued to it along aT- ~ in the ordering. (Note that the orientation of a n gives an 
ordering, up to even permutations, of  the a']-1 ~ (a,,c~ S )  which is also needed to 
specify the choice of V a'an÷'. ) 

Clearly a k-colouring of M induces a k-colouring of OM. With a simplicial n- 
manifold M and an ( n - 1 )-colouring ~ of 0M we associate the vector space 

where the sum is over all ( n -  1 )-colourings 8 of Mwhich induce ~ as an ( n -  1 )- 
colouring of OM. The tensor product in (2.4) is in the order specified by the 
ordering of M (see Fig. 2). 

For each of the spaces V a'a~ we choose a basis, which we denote 
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~ g f 

= ( ~ ( V  *b~ ® V b'h~ ® V o ' "  ® V d' 's) 
b,c,d 

Fig. 2. Constructing the vector space associated with an ordered simplicial 2-manifold whose bound- 
ary is coloured (a, h, i, e , f  g). 

[ al...ad],~ ~ V ar''ad, such that they satisfy 

( [a~ ""ad],~, [bT'"b~]p)=~,,p 

where b~...bd is an odd  permuta t ion  ofa~ ""ad. (2.5) 

Definition 2.11. With respect to the above choice of  basis we define a labelling a 
of  an ( n -  1 )-coloured simplicial n-manifold N to be a choice of  basis vector at 
each n-simplex. 

Let N be a simplicial n-manifold with ( n - 1 )-colouring a and labelling a .  We 
then denote 

[ a ] a -  (~) [al"'an]ai~V(N;~), (2.6) 
anoN 

where a is the ( n -  1 )-colouring of  ON induced from a. If  ON= 0 these are the 
vector spaces V(N) of  the SQFT. No w consider the case where N =  0 M f o r  a sim- 
plicial d-manifold M so that d =  n + 1. 

The maps  Z ( M ) :  V(OM)--, C are then defined in terms of  Z(3 d) by 

Z(M)" [,~ ]a---o9 2'*'~Int M) +~*'~°M) 

X l-I ogn, ~, ( ~ o92j I-I "~(Adi)'[ak],~h), (2.7) 

with 

Z(zl,a) • [ ak],~ =_-o9 -#a~oa~) I1 og;,1Z(A~)'[ak].h, 
,,¢-2~0,J~ 

(2.8) 

where the following is implied: 
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(i) toe C is an arbitrary parameter and 

( -1 )d (Co-Cl . . . ( - 1 )a -3Ca_3) ,  for d > 2 ,  
#d (C) - -  0 ,  otherwise, 

for any complex C where C~ is the number of/-simplexes in C. 
(ii) d and ~ are a labelling and (d-2) -co lour ing  of the simplicial ( d - 1 ) -  

manifold OM. 
(iii) The sum is over all (d-2)-colour ings  a and labellings a of M which in- 

duce ~ and ~ on OM. 
(iv) Ak d is the simplex ak a together with its faces. 
(v) a~ and a i are a labelling and ( d - 2  )-colouring of A d induced from a and a. 

(vi) a,- is the colour of the ( d -  2 )-simplex a, -d-z. 
It is straightforward to check that these maps are multiplicative in the sense of 
SQFT axiom ($4). 

2.2.2. Elementary moves and topological constraints on the initial data 
A SQFT is said to be topological if Z(MI ) = Z(M2) whenever M1 and M2 have 

the same topology (i.e., 3 a piecewise linear homeomorphism f : M ~ M 2 )  and 
OMI and OM2 are isomorphic as simplicial complexes (i.e., 3 a simplicial iso- 
morphism between them).  

Note that this is equivalent to the definition given by Atiyah in Ref. [ 1 ], where 
the maps Z(Jg)  and vector spaces V(5e) are associated with d-manifolds Jr' and 
their boundaries 5 e. Following Ref. [ 12 ] one may construct a vector space V( 5 p) 
associated with a closed ( d -  1 )-manifold Se using a simplicial d-manifold with 
the topology of 5 e × ~ ,  where ~1 denotes a one-dimensional ball. Given two 
closed simplicial ( d - 1  )-manifolds $1 and $2 in the equivalence class 5 e, let 
Cs,s2 be such a cylinder simplicial d-manifold with OCs,,s2 = $1 • S~. Then define 
the map Cyls,s2 : V(S1 )--, V(S2) by 

Z(  Cst,s2)" ( V( SI ) (~ V( S'~ ) ) = ( Cylsl,sz . V( S1), V( S~ ) ) . (2.9) 

We can now define V(Se)_ V(S1 ) / ~  where ~ is the equivalence relation in- 
duced by the map Cyls,,s~. Clearly, Z(M)  induces a map Z(~¢) : V(&¢¢)--,C for 
each d-manifold J¢. 

When the SQFT is constructed from the abstract data given above, the topo- 
logical constraint on Z enforces strong conditions on the initial data. As the ini- 
tial data is local in the simplicial manifold we can express these conditions 
directly on the initial data if we can express a general piecewise linear homeo- 
morphism on M in terms of a product of  local maps, i.e. maps which are equal to 
the identity outside a d-ball neighbourhood of a point in M. Many such theorems 
exist, the first being due to Alexander [2 ] in the 30's. The following theorem due 
to Pachner [ 3 ] is the most suited for our purposes as it expresses a general pie- 
cewise linear homeomorphism in terms of the product of  a finite number of local 
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a l-move on a 

2-complex 

a 1-move on a 

3-complex 

Fig. 3. Examples of elementary moves. 

piecewise linear homeomorphisms, or "moves" on the triangulation. To describe 
these moves we need the following definitions. 

Definition 2.12. The join of two simplicial complexes K and L is the simplicial 
complex 

KeL=-{(Xo, ...,xn,yo .... ,Ym): (Xo, . . . ,xn)eK and (Yo, . . . , y m ) e L }  • 

Definition 2.13. An elementary k-move on a simplicial n-manifold M is the re- 

placing of  a subcomplex A ke 0zP- ~ of M by a complex OLt ke/t n- k, which has iden- 
tical boundary (see Fig. 3 for examples). 

The central theorem and corollary. 

Theorem. (Pachner [3] ) .  I f  OM1 is isomorphic to OM2 then IMll and IM21 are 
homeomorphic i f  and only if  M2 is the result of  a finite number of elementary moves 
on a simplicial manifoM isomorphic to MI. 

We may now state the corollary of  this theorem which is central to our con- 
struction (this result was first pointed out in Ref. [ 8] ). 

Corollary. The initial data L *, O)a, Val""ad and Z( A a) define a TQFT via the above 
construction if Z( J a) is such that the following map identities hold: 
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Z ( d k o O d d - k ) = Z ( O . 4 k o z J d - k ) ,  f o r O < ~ k ~ d ,  

where Z (  M )  is defined in terms o f  Z ( A d) by Eq. (2.7), with 

E 
ael 

(2.10) 

(2.11) 

2.3. The dual cell decomposition and coloured d-graph invariants 

In this section we translate the construction to the cell decomposition dual to 
the simplicial manifold. The identities (2.10) will be seen to be equivalent to 
certain identities satisfied by topological invariants of graphs embedded in a 
( d -  1 )-dimensional sphere. We must first run through some more definitions. 

Definition 2.14. The barycentre of an n-simplex a n, denoted b (an), is the point 
in I tr" l, as defined in definition 2.1, where each 2 ~ = 1 / (n + 1 ). 

Definition 2.15. With each sequence of simplexes tr p' c a p2 c ... ~ tr pk with Pi < 
p~+~, we associate a k-simplex (b(aU'), ..., b(tr  pk) ) whose vertices are the bary- 
centres of tr p', ..., tr ek. The barycentric star, bstar(trn), of an n-simplex tr n in a 
simplicial complex K is the simplicial complex 

bstar (tr n) = { (b (an), b ( a  p~ ), ..., b(tr pk) ) : aP'eK}. (2.12) 

Definition 2.16. The barycentric subdivision of a simplicial manifold M is the set 
{bstar (tr) : treA/} of simplicial complexes (see Fig. 4 for examples). 

Definition 2.17. The n-strata of the barycentric subdivision o fa  simplicial d-man- 
ifold M is the space 

U I 0 (bstar(trd-n-~)) I . (2.13) 
( trd-n- l )~M 

(a) to) 

Fig. 4. The barycentric subdivision of (a) a simplicial 2-manifold and (b) a simplicial 3-manifold. 
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Fig. 5. A simple 2-polyhedron and its associated 4-graph J~3 embedded in .~3. 

Definition 2.18. A simple n-polyhedron is a topological space in which each point 
has a neighbourhood homeomorphic to the neighbourhood of  some point in the 
n-strata of  the barycentric subdivision ofzl "+ ~ (see Fig. 5 ). 

Definition 2.19. An n-graph f~ is a neighbourhood of  the 1-strata in a simple 
( n -  2)-polyhedron. 

For a given colour set I we define a colouring a of an n-graph f~ to be a map 
from the links of  f~ to L By an ordered n-graph we mean an n-graph together with 
an ordering of  its vertices. However, as we did for simplicial n-manifolds in Sec- 
tion 2.2 we will now be slightly loose with our language and will always imply 
ordered n-graph when we say n-graph. We now consider embeddings of coloured 
d-graphs f~ in orientable ( d -  1 )-manifolds ~¢t, and denote such an embedding by 
f~.  As we did for simplicial d-manifolds we associate the initial data V(p, a ) = 
V a',,an with each n-valent vertex p, where ai or a* are the colours of the links 
meeting at p. The ordering of  the vertices clearly induces an orientation on each 
link which weuse  to make this choice. (Note that it is the orientation of~¢ that 
supplies an ordering up to even permutations of  the links meeting at p, which is 
also needed in order to specify V a'''an. ) We may now associate the space 

V ( f ~ ; b ) -  ~ r ( p , a ) ) ,  (2.14) 

with an embedded graph ~ whose boundary links (those containing only one n- 
valent vertex) are coloured b. In (2.14) the sum is over all colourings a which 
induce b. 

With an embedding, fg~a_,, of a closed d-graph f~ in the ( d -  1 )-dimensional 
sphere 6ed- 1 we associate maps Z ( f~S~d-' ) : V((#s~a-') --'C. (Note that we write 
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V ( ~ )  -= V( (#; ~ ) when ~ is closed. ) In order to describe how the identities (2.10) 
on the initial data translate to map identities between these maps Z( (#~-  ~ ), we 
will require the following standard graph embeddings. 

(i)  Denote by J ~ - ,  (respectively ~ - ,  ) the open d-graph containing only one 
vertex (respectively two vertices) and embedded in the ( d - 1  )-dimen- 
sional ball ~d-1 in such a way that it is homeomorphic to the neighbour- 
hood of  the 1-strata in the (d-2) -s trata  of the barycentric subdivision of 
A d- ~ (respectively /fd- ~ u/fd- ~ ). Here A d- ~ uA d- ~ denotes the simplicial 
manifold made from gluing two copies of  jd-~ along a common ( d - 2 ) -  
simplex in their boundaries. Figs. 5 and 6 show examples. 

ooo.°o . . . . .  ° . ° °% 

o. oo 

%•%°°  . . . . .  °o~'°°° 
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I O~O~ O~O . . . . . .  ~ Q t  

I 0 ~ ~L 

/ 

%•°°-... . . . . . .  .o°oO°°'°° 

(c) 

oO°O°o . . . . .  o°o% 

f o "  

~ Q ~  . . . .  ~ 

(b) 

ooooo.OO . . . . .  O°o% 
.° 

oo #o 
o° 

/ 

., 
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i ] ]  
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i::~l l]]]]]]]i 
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iiil liii!}iii 
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• ~ ' . . .  . . . . . .  oOO'°°° 

(d) 

% 

i :  

!i~i : \ 

i]iJ 

iiii 
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]~ii 

i!i 

i / 
i / 

i : 

[2." .o 

Fig. 6. Some standard d-graph embeddings, (a) ~a2, (b) -~a2, (c) #~3, and (d) -~3. 
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(ii) Denote by -~a~-, the d-graph embedding consisting of ( d -  1 ) parallel strands 
in ~ d - t  (see Fig. 6). 

(iii) Denote by ~ a - ,  the closed d-graph with (d+  1 ) vertices, embedded in 5~d- 
in such a way that it is homeomorphic to the neighbourhood of the l-strata 
in the ( d -  2 )-strata of the barycentric subdivision of OA d. 

Theorem. The initial data I, , ,  O9~ and V ~ ' ~  together with the maps Z( f¢j~_~ ) 
satisfying the following two identities (2.15) and (2.16), provide the initial data for 
a TQFT. 

The first identity corresponds to fusing two d-graph embeddings into one, 

Z(f~d--I U J ~ d - l ) "  (x(alllc) ® [a l  ""ad]~,) 
ot 

X Z(YC~d-, ~YBd- , ) ' (y(a)®[azala3""aa]~)  

=Z(Y'~a_~ w Yl~a_,). ( x ( a * ) ® y ( a )  ) , (2.15) 

where ~5~_~ and ~/~a-, are d-graphs each with d boundary links so that YC~ ~_, 
J~a-, and Y / ~ - , ~ J ~ a - ,  are embeddings of closed graphs in ~a-~, 
x(  a* )~ V( ~a_~; a* ) so that x( a* ) ® [ al ...aa]~E V( ~?~a-, u J~d-~ ), and simi- 
larly for y( a )~ V( ~/~- ,  ). 

The second identity corresponds to removing two adjacent d-graph vertices, 

2 Z ( ~ _ ,  u ~ _ ,  ). (t(az"-aa, az" 'aa)  ® [al ""aa]~® [a2a~ a3""aa],) 
al ,o~ 

= z(~r~a_~ u ~ _ ~  ) . t (a~ ""aa, a~.. .a~) , (2 .16 ) 

where g-~a-~ is a d-graph with 2 ( d -  1 ) boundary links so that Y--~-, w g~a-, is the 
embedding of a closed graph in ~ a -  ~, and t ( a~'"aa, a ~...a ~) ~ V( ~ ~_~ ; ~ ), with 

= (a2, ..., aa, a~, ..., a~).  

Proof We first note that V ( ~ - , ) =  V(OAd), as is clear from Eqs. (2.4) and 
( 2.14 ). Hence we may make the identification ~ ( d  d) - Z( ~ - ~  ). We now show 
using diagrammatic techniques for the three cases d =  2, 3 and 4 that the Z ( M )  
constructed via Eq. (2.7) using the identities (2.15) and (2.16) together with 
o9 2--- Za~Z O9 4 , satisfy the identities (2.10 ) and hence give the required result. 

The 2-graph identities. Denote by [ a ] ~ -  [al '- 'a~],, . . . , ,- [ a l , az ] ,~® 
[ a ~, as ] ~2 ® [ a ~, a41,3"" @ [ a 7, a T ] ,, the basis of V( ~ 1  ), where f~ is a closed 2- 
graph with I vertices. We denote the complex numbers Z( fg~, ). [a ] ,  by the fol- 
lowing 2-graph diagram: 
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z(~:,).[a]~,=- 
Oil Ctj 

o,\. f,  
0t l  f02 ~ 2  

(2.17) 

The conditions (2.15 ) and (2.16 ) on Z are then represented by the following 2- 
graph identities: 

ol 

Ot 

Ot 

# 

I . ~ o  . . . . .  ° . +  

[a+ = ". . , (2.18) 
a a 

2 

E O:a 
Ol,a ~ =~b,~ ~ ' 

2 
2 

(2.19) 

where, as is standard practice in such notation, one means that outside the section 
of  the diagram that is shown in the bracket the diagrams are equivalent. 

Denote by a =  (oq .... , c~6) and a =  (al, ..., a4) the labelling and 0-colouring of  

,J°ed/12 shown in Fig. 7. This clearly induces t~---(oq, a2, a3) and k on 

d(zl°eO/12)=azl°oOd 2. Then for each basis element [ala2a3]~,,~2,~3 of  
V( dA°eOd2; ~ ) we have 

Z ( z ~ ° @ O z ~ 2 )  ' [ a l  a2a3 ]c~tc~2c~3 

~-O)al(IJa2('l)a3 E 0)2 a4 
a4 ,or4 ,or5 ,or6 

X ~(A 2)" [al a4a3 ] ~4,~5a3 ~ ( d  2)" [a~a2a3 ],~6~2a5 ~ (  d2)" [al a2 a+ ] ,1,+~4 

-~O.~alO)a20)a3 ~ 0,)24 
a4,o~4,0t5 ,¢x6 

~ 4  116 Oil 
2 
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fOal fOa2 fOa3 
Or! 

= Z ( O d ° e d  2 ). [ al a2 a3 ] ala2a3, ( 2.20 ) 

proving invariance under elementary 0-moves. Note that we have used the SQFT 
axiom ($4),  which says that Z is multiplicative for disjoint manifolds, as well as 
Eqs. (2.18 ) and (2.19). We prove the invariance of Z under an elementary 1- 
move in a similar way: 

Z (  ~ lOOZ~ 1 )" [alaEa3a4]~t.2~3,~4 

o ,  o ,  

2 

fOal'"fOa4 

~4 a4 ( 

C(I a 2 

Otj 

~ 2  
2 

~ 6  S t  O~ 2 

= Z ( 0  z~ 10Z~ I )" [ala2a3a4].,.2.3a4. (2.21) 

The 3-graph identities. Here ~ is a closed 3-graph and for the basis [a ]~ of 
V(f~,2) we represent Z(fg~2). [a],~ by a coloured and labelled 3-valent graph 
with oriented links, drawn on the plane as in Fig. 8. The C-numbers that these 

a I 

as 

~2 

Fig. 7. A 0-colouring and labelling of ~o• 0d2. 
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Ot 

a3 

a5 

Fig. 8. A coloured and labelled 3-graph diagram. 

diagrams represent are invariant under homeomorphisms of the diagrams 
embedding in the plane, as well as being invariant under the following move due 
to the fact that f~ is embedded in 6 e2 and not R2: 

:'~:1 

Ii:~i::.:.:-:-:.:.:-:- 
(2.22) 

Here the shaded box represents an arbitrary diagram. 
The conditions (2.15) and (2.16) on Z are represented by the following 

identities: 

E 
Ol 

a l ~ J  c 

, (2.23) 

(2.24) 

Using (2.22), (2.23) and (2.24) we can show that Z(M) is invariant under 
elementary k-moves. Firstly for a 0-move 
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Z(A°eOA3)" [a, ""a6 ] al...a4 = o ) -  6(-Oa, ""O)a 6 ~ 2 2 (-/)bl ""(-Db4 
#1 ""•6 ,bl ""b4 

× 

133 133 

b 2 ~  ~ 

8, 

b~ 

(.D -- 40) a 1"" O")a 6 

a !  

i 
O~ 4 

= Z ( O d ° ° A  3 )" [al ""a6 ]a, ...a4 , 

on using (2.23)  and (2 .24) .  
Similarly for an e lementary  1-move 

(2.25) 
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Z(dl°Od2)'[al'"a9]ar..a6=to-StOal""o~a9 ~ t.o 2 
,81,02,03 ,b 

× 

Oi 01 

a $ 

~6 

('/) -- 50)al "" "(-/)a9 

Ut 2 02 Ot 1 ¢ 

1~5 Q9 a6 

E O3-50)al ""('Oa9 

0 2 

05 ~ 9  a 1 
09 ~ °3 / 

(16 J , 
3 

=Z(OAleA2)"  [al ""a9 ] ar..o~6- (2.26) 

The 4-graph identities. Here ~ 3  is an embedding of  a 4-graph f~ in 6e3. We 
represent the C-numbers Z( f~s~)" [a ]~ by what we call coloured and labelled 4- 
graph diagrams. These are knot diagrams with the 4-valent vertices drawn as in 



F.J. Archer / Journal of Geometry and Physics 16 (1995) 39- 70 57 

Eq. (2.27),  together with a map from its links to the integers Z. (Note that this 
map is denoted on the diagram as multiples of  ~ for convenience (6 being a 
twist) .)  The C-numbers that these diagrams represent are invariant under the 
standard Reidemeister moves of  regular isotopy in ~ 3, together with the follow- 
ing two moves: 

I 

(2.27) 

atN'l 

4 4 

(2.28) 

The conditions (2.15 ) and (2.16 ) on Z are represented by the following 4-graph 
identities: 

Z o/ 

~i!i~iiii!i!ii1ii!!!!!!~!!~!!!~!!~i~i~i~i~i~i~iii~iiiiiii!ii!~iii!~!i~!~| 

M,+ I IM2÷ IM,+ IM, ÷ 

(2.29) 

y c 
¢ 

a "S 

•M• 
M3 

0 
b 

3 

MI+ Nt M 2 +  
N2 M3+ N3 

d 

(2.30) 

The invariance of Z(M) under elementary 0-, 1-, and 2-moves can be shown by 
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using (2.27),  (2.28),  (2.29) and (2.30),  together with regular isotopy Reide- 
meister moves. 

Z(A°e0/14) [al""alo],l . . .~s- -13 2 2 
• - -  (9 O)al...tOal o Z O')b ""('Ok 

flt"'/~10,b...k 

X 

Ix  I 

a I a 5  

~ J 0  3 

4 

09 -- 50)al "'" O,)al o 

O~ 1 

0(2  5 

0 .  3 

~ 5 

Ot 4 

= Z ( 0 Z ] 0 0 / ] 4 )  ' [a l  ""alo  ],~,...~s • ( 2 . 31 )  

Note that we have basically used (2.29) repeatedly to fuse the five disjoint 4- 
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graphs into one, and then used (2.30) to remove the extra vertices. We proceed 
similarly for the 1-move and 2-move 

Z(Alead3).[a...p]cw..c~4,#,...p,=co-tOcoa...co p ~ coq2.., co,2 
X l . - - x 6 , q " ' t  

OL I 

1~1 I l 

~4 ~ 
X ~4 

~4 ": ~+ 

l 
~ 4  X s  

e 

$ 

~3 

(x 2 

d 

~2 

~2 

P 

=CO -8COa'"CO p 

xZ l 
Ot 4 

~t L 

Ot 2 

= Z(831  eA3) .  [ a ' "P  ],~...~,.aL...p,, (2.32) 
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Z(d2*Oztz)'[b'"s]a,p,x=O)-3(-Ob'"O~s ~ o)2t 
J l  J 2 J 3 , t  

X 

ot I 

1 

~2 

!~t 63 

82 

~3 

E 
Q 

~2 

P, 

1 

or! 

~ j  

~3 

~t 

= Z ( O A 2 o  A 2 )  . [ a . . . p  ]cw..,~4,p,...p~ . (2.33) 

3. Realisations from the Kauffman bracket polynomial 

In this section we show how one may obtain initial data satisfying the d~< 4 
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construction conditions of Section 2 directly from the Kauffman bracket poly- 
nomial in (q, q-1 ), when q is a complex root of unity. It is clear from the con- 
struction that we require knot invariants with specific properties in order to de- 
fine 4-graph values satisfying the identities (2.29) and (2.30), and hence the 
d= 4 initial data for the TQFT. Such 4-graph values would induce 2- and 3-graph 
values which would define two- and three-dimensional TQFTs as well (this just 
being an example of the fact that d-dimensional TQFTs induce TQFTs of lower 
dimension). We will show explicitly how to construct 2-, 3-, and 4-graph values 
from the Kauffman bracket polynomial. 

In three dimensions the model corresponds to the Kauffman-Lins model of 
Ref. [ 13 ] and hence the Turaev-Viro state-sum model of Ref. [ 12 ]. The q-de- 
formed spin-networks that we build up from the Kauffman bracket polynomial 
are intimately related to the representation theory of the quantum group Uqsl (2), 
in fact they are the recoupling theory. We will see that just as quantum 6j-symbols 
play a leading role as the initial data 2(A 3). [ a ] ,  in the three-dimensional model, 
it is certain quantum 15j-symbols which form the initial data 2 (/14 ). [ a ] ~ for the 
four-dimensional model. 

3.1. From q-deformed spin-networks to TQFTs 

The simplest model is based on the Kauffman bracket polynomial [ 14]. This 
associates a polynomial in q and q-1 with real coefficients, with each knot dia- 
gram and is an invariant of regular isotopy, which is the equivalence relation on 
knot diagrams generated by the Reidemeister moves (a), (b), (d) and (e) of 
Fig. 9. It is defined by the two relations 

[ X ] =q-'/z[ ~d K f~ ]K +q-l/2 [ ) ( ]K' 

[O]K 
(3.1) 

= _ ( q + q - l )  . (3.2) 

Reidemeister showed [ 15 ] that knot diagrams of any two embeddings of closed 
loops in ~3 which can be continuously deformed into each other (ambient iso- 
topy) are related by a sequence of the moves (b), (c), (d) and (e) of Fig. 9. The 
regular isotopy moves relate topologically equivalent embeddings of ribbons. The 
Jones polynomial [ 16 ] J(Le) of a knot Le, which is an ambient isotopy invariant, 
is related to the Kauffman bracket polynomial by the following relation: 

j ( ~ )  = (__q3/2) ~(~)[-~¢]K, (3.3) 
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I 
(a) 

(d) 

(b) 

(e) 

(c) 

I 
Fig. 9. The Reidemeister moves of ambient isotopy are (b), (c), (d) and (e), and those of regular 
isotopy are (a), (b), (d) and (e). 

where w(.Y) is the writhe, or number of twists in the ribbon. Note that (3.1) and 
(3.2) are sufficient to define the invariant as one can use (3.1) to reduce any 
knot diagram to a collection of unknots (3.2) (the bracket of a knot being de- 
fined such that it is the product of the brackets of the disjoint components). 

The Kauffman bracket may be generalised to a regular isotopy invariant of 
integer coloured 3-valent graphs (q-deformed spin-networks) in the following 
way. First one defines coloured links by the linear combination of strands given 
iteratively by 

I1 n 

[I] 
K K K 

n-I 

[ H I ]  nll -- + S i  

K 

n-I 

n- I  
K 

(3.4) 
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where [ n ] is defined to be the following function of q: 

[ n ] = - ( q n - q - n ) / ( q - q - t )  . 

Crossings are defined in the natural fashion by 

K 

m ta 

X 
(3.5) 

K 

, ( 3 . 6 )  

and 3-valent vertices by --.( 
K K 

(3.7) 

It is clear that Eq. (3.7) may only be used to define a 3-valent vertex if each of 
½ ( m + n - p ) ,  ½ ( p + m - n )  and ½ ( m + p - n )  is a non-negative integer. If the tri- 
ple (m, n, p) satisfies this property we say that it is an admissible triple. The 
bracket value is defined to be 0 if this is not so at any vertex. An easy iterative 
calculation using (3.4) shows that 

n Q  I K  = ( - - 1 ) " [ n + l ] "  (3.8) 

3.1.1. Identifying the initial data 
We now have all that we need in order to produce initial data for TQFTs in 

dimension d =  2, 3 and 4. In each case for a positive integer r we take q=  exp (rri/ 
r). The colour set is then taken to be the non-negative integers less than r -  1, 
1 -{0 ,  1, 2, ..., r - 2 } ,  the involution map is the identity map so that a=a*, and 
the gluing coefficients are o)2 = ( - 1 )a [a+  1 ]. The vector spaces V al'''ad and the 
d-graph values, which give the maps Z, are now described for d =  2, 3, and 4. 

A d= 2 state-sum model. Here the vector spaces V ab are zero unless a =  6 in 
which case they are each isomorphic to C. Hence the value of a 2-graph is 0 unless 
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all its edges have the same colour. We also have no need for a labelling as 1/raa is 
one-dimensional. With the identification 

I vertices 

a 

(3.9) 

the conditions (2.1 8 ) and (2.1 9 ) on 2-graph values are satisfied trivially as 

1 vertices 

m vertices 

~.(l)4--I--m --. 

e • • 

I I a 
I soo 

2 

(3.10) 

0Ja 
a 

o~ 
~OQ~QQ I 

b ~ 1-2 vertices 

2 

(3.11) 

The maps Z are defined via (2.7) together with the identification 2(d2)= 
Z( ~ ), which tells us that 

Z(d2)  • [ aa ]® [aa] ® [aa] - =09;  ] . 

2 

(3.12) 

It is then easy to show via (2.7) that 

Z ( S N ,  Pll...np ) " [ a ]  " - 0 )  4( I - N ) - 2 p - n l  . . . .  rip, ( 3 . 1  3 )  

where SN;,,...np is a simplicial 2-manifold of genus Nwith p boundary components 
of nl to np 1-simplexes each. Note that for non-zero Z the boundary components 
must all be of the same colour. For closed surfaces the colour would be summed 
over so that for a surface of genus N one gets 

Z ( S n ) =  ~. to~ t]-n) (3.14) 
a e l  
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Note that the classical r~c¢  limit of this agrees with the e ~ 0  limit of the SU(2 ) 
lattice gauge theory result obtained by Witten in Ref. [ 17 ], where e was the in- 
verse temperature. (See also Refs. [ 18 ] and [ 19 ] for more about the connection 
with lattice gauge theory. ) 

A d= 3 state-sum model (Turaev- Viro theory). We now show how the Turaev- 
Viro model may be built using the construction of Section 2. First we denote by 
O(a, b, c) the following network value: 

O(a, b, c) - 

K 

( - 1 )(a+b+c)/2 
= [a]![b]![c]! [ ½ ( a + b + c ) + l l ! [ ½ ( b + c - a ) ] !  

× [ ½ ( a + b - c ) ] ! [ ½ ( c + a - b ) ] ! ,  (3.15) 

where the second identity is an explicit evaluation of the network (see appendix 
C of Ref. [ 19 ] ). Note that by [ n ] ! we mean [ n ] [ n -  1 ]... [ 2 ]. Following Ref. 
[ 13] we call an admissible triple (a, b, c) r-admissible if O(a, b, c) is non-zero, 
i.e. ½ ( a + b + c )  + 1 <r.  We can now define the initial data V ~b~. If ( a + b + c )  is r- 
admissible then each of V ab~ is isomorphic to C and if (a + b + c) is not r-admis- 
sible then V ~b~ is zero. We define 3-graph values by the following identification 
for general graph X: 

(3.16) | !!i! ~i~!i ::+: ii~i~i~i~ii!i!!i| 

- - - - - -  3 - - - - -  K 

where the product is over all vertices i and (ai, b~, ci) are the colours at vertex i. 
In particular this implies the normalisation 

so that we have the required 3-graph identity 

(3.17) 

, ( 3 . 1 8 )  
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which is simply saying that the only way to connect up the (a + b + c) strands is 
as in Eq. (3.7). The identity (2.22) is a result of the regular isotopy 

+::'::::+:+::il a = ::::::::::::::::::::: a " 

3 3 

(3.19) 

The second 3-graph identity (2.24) translates as 

¢ 

3 

| 

3 

(3.20) 

where the sum is over all ceI such that (a, b, c) is an r-admissible triple. 
The equivalence of the TQFT defined from the above initial data and that de- 

fined by Turaev and Viro in Ref. [ 12 ] is clear when we notice the following re- 
lationship between 2(A 3) and the quantum 6j-symbols I} ~ nk[q: 

2(zt 3) . [ abc] ® [ bde] ® [ afd] ® Ice.I] 

= Z ( ~ 2 ) .  [abc] ®[bde] ® [afd] ® [cef] 
a =@, ff 

3 

=D(a, b, c)D( b, d, e)D(a; f,, d)D( c, e,f) 

( ( -  1)Z[z+l ]' ) 
× (-- 1 )(a+b+c+d+e+J)/2 ~z [ t, ] [ [ t  2 ] ! I t3  ]~ ~ 4  ~ - t 5  ][ [t6 ][ [/7 ] i  

a/2 b/2 c/2 
= e/2 f /2  d/2q (3.21) 

where the sum is over all z such that the ti, which are defined as follows, are non- 
negative: 

q - z - ½ ( c + e + f )  , t s - ½ ( a + c + d + e ) - z ,  
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and 

tz=-Z-½(a+d+f) ,  

t3 = z -  ½ (a+b+c) , 

t a -Z -½(b+d+e)  , 

t6 = ½ ( a + b + e + j O  - z ,  

t7 -- 12 (b+c+d+ f) - z ,  

D(a,b,c)=- ( (½(a+b-c )  ],t½(a+c-b)t½(a+b+c)+ l ][],t½(b+c-a) ]l) 1/2 

(3.22) 

(3.23) 

A d= 4 state-sum model. In an analogous way to the d= 2 and d= 3 models, we 
d e f i n e  V abcd to be the vector space generated by the independent ways of con- 
necting up a Kauffman network with four legs coloured a, b, c and d. Hence V abca 
is isomorphic to C N~abca) with N(abcd) equal to the number of colours f e I  such 
that both (a, d, f )  and (b, c, f )  are r-admissible. It is straightforward to show 
that this number depends only on the 4-tuple (a, b, c, d) and not on their order. 

4-graph values may be defined in terms of the Kauffman bracket by the follow- 
ing two relations (3.24), which is one choice of orthonormal basis, and (3.25), 
which defines the twist on each link. 

If max(a, d) ~< min(b, c), define 

- 1 / 4  1/12 
OJf(ot) t f(a) ( ta tbtcta) 

- x/O(a, d,f)O(b, c, jO 

4 
K 

(3.24) 

I a M ~(~)~ 

4 K 

(3.25) 

where a runs from 0 to N -  1, and 

f (a )=-max( la -d l ,  Ib-cl  ) + 2 a .  

Here the twist coefficient ta is defined by 

ta--~O y 2 ~ a = ( -  1 )aqa~a+2)/2. 

K 

(3.26) 

(3.27) 
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More generally the following identity holds: 

] ] b~  ~ c ~.(tatb)l/2(tc)_l/2 c 

K K 

(3.28) 

We may then use Eqs. (3.24), (3.25), (3.28) together with (2.27) of Section 2 
to derive the other orientations of the 4-graph vertex with max (a, d) ~< min (b, c). 
In particular 

i 4 - - 1 / 1 2  _ tOf(a)t}(4a)(tatbtctd) 

= x/O(a, d,f)O(b, c, jO 

4 
(3.29) 

Together with (3.24), this implies the 4-graph identity 

d 

oo~ o 

o 
2 2 

~,d O') d("O'~( °Q 
= O(a, d,f)O(b, c,J) 

(a) 

K 

O(b,c,J) 

7 \  c 
K 

~--- a b (3.30) 

• 4 

where we have used relation (3.20) twice. It is also straightforward to check the 
orthogonality condition 
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Ix 

=J,~,p, (3.31) 

from which follows the second 4-graph condition 

a 01 iiill l I a 0 b 0 c 0 d 0 
Ix Ix 

(3.32) 

We see that ~ (A 4 ). [ a ]~ - ~ ( ~s~s )" [-a ]~ is a quantum 15j-symbol with a = a~, 
• .., alo a n d f ( a l  ), ...,f(t~5) as the 15 arguments. 

4. Conclusion 

We have seen that there is a very natural generalisation of the state-sum con- 
struction of Turaev and Viro to arbitrary dimension. This relies on the fact that 
piecewise linea~ topology can be understood, in all dimensions, via the equiva- 
lence relation generated by elementary moves on simplicial manifolds. Realisa- 
tions of the initial data also generalise to arbitrary dimension, and we have seen 
that larger q-deformed spin-networks form the weights just as 6j-symbols did in 
the Turaev-Viro model. 

Since Turaev and Viro formulated their model, clear relationships have been 
established with invariants of  3-manifolds constructed by other methods, in par- 
ticular the Reshetikhin-Turaev invariants of  Ref. [20 ]. It is clearly of mathe- 
matical interest to see how the d =  4 state-sum invariants defined above are re- 
lated to other 4-manifold invariants associated with classical simple Lie groups, 
such as the Donaldson invariants. 

On the physics side it would be of great interest to see the connection between 
the d=4,  Uqsl(2) state-sum model and the Ashtekar variable formulation of 
gravity, which also has states associated with knots [21 ]. For more discussion on 
this matter as well as a description of observables in these state-sum models, the 
reader is referred to Ref. [ 19 ]. 



70 F.J. Archer/Journal of Geometry and Physics 16 (1995) 39-70 

Acknowledgements 

This work was carded out in DAMTP, Cambridge, UK, and greatly benefitted 
from many discussions with R.M. Williams and J. Barrett. I also gratefully ac- 
knowledge a SERC studentship. 

Note added after completion 

Recently Roberts [ 22 ] has noted a simple relationship between the 4-manifold 
invariants defined by a state-sum over Uqsl(2) 15j-symbols in Ref. [23] (these 
being essentially equivalent to the invariants defined in this paper) and the sig- 
nature of the 4-manifold. 
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